Galerkin v. discrete-optimal projection in nonlinear model reduction

نویسندگان

  • Kevin Carlberg
  • Matthew F. Barone
  • Harbir Antil
چکیده

Least-squares Petrov–Galerkin (LSPG) model-reduction techniques such as the Gauss–Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible flow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform optimal projection associated with residual minimization at the time-continuous level, while LSPG techniques do so at the time-discrete level. This work provides a detailed theoretical and computational comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge–Kutta schemes. We present a number of new findings, including conditions under which the LSPG ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and computationally that decreasing the time step does not necessarily decrease the error for the LSPG ROM; instead, the time step should be ‘matched’ to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible-flow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the LSPG reduced-order model by an order of magnitude.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Space-time least-squares Petrov-Galerkin projection for nonlinear model reduction

This work proposes a space–time least-squares Petrov–Galerkin (ST-LSPG) projection method for model reduction of nonlinear dynamical systems. In contrast to typical nonlinear model-reduction methods that first apply (Petrov– )Galerkin projection in the spatial dimension and subsequently apply time integration to numerically resolve the resulting low-dimensional dynamical system, the proposed me...

متن کامل

Conservative model reduction for finite-volume models

This work proposes a method for model reduction of finite-volume models that guarantees the resulting reduced-order model is conservative, thereby preserving the structure intrinsic to finite-volume discretizations. The proposed reduced-order models associate with optimization problems characterized by a minimum-residual objective function and nonlinear equality constraints that explicitly enfo...

متن کامل

Symplectic Model Reduction of Hamiltonian Systems

In this paper, a symplectic model reduction technique, proper symplectic decomposition (PSD) with symplectic Galerkin projection, is proposed to save the computational cost for the simplification of large-scale Hamiltonian systems while preserving the symplectic structure. As an analogy to the classical proper orthogonal decomposition (POD)-Galerkin approach, PSD is designed to build a symplect...

متن کامل

Nonlinear Model Reduction via Discrete Empirical Interpolation

Nonlinear Model Reduction via Discrete Empirical Interpolation by Saifon Chaturantabut This thesis proposes a model reduction technique for nonlinear dynamical systems based upon combining Proper Orthogonal Decomposition (POD) and a new method, called the Discrete Empirical Interpolation Method (DEIM). The popular method of Galerkin projection with POD basis reduces dimension in the sense that ...

متن کامل

L2-Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations

We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ∞ L2 error estimates of discontinuous Galerk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1504.03749  شماره 

صفحات  -

تاریخ انتشار 2015